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1 Cycle Index Multiplication and Composition

1.1 Relationship to plethystic substitution

Last time we proved the following proposition.

Proposition 1.1. Let F be a species and A be a weighted set with ordinary generating
function A, then ZF [A] is the ordinary generating function for unlabeled F -structures dec-
orated with A.

Corollary 1.1. If F,G are species,

ZFG = ZFZG.

Proof. It is enough to show that for every A,

ZFG[A] = ZF [A]ZG[A].

A decorated FG-structure will be a decorated F -structure on one part of the set and a
decorated G-structure on the rest.

Definition 1.1. Let f, g ∈ Λ. Then we define plethystic composition as

f ∗ g := f |pk 7→(pk∗g), where pk ∗ g = g|p` 7→pk` .

Notice that pk[p`[A]] = pk`[A], so

(f ∗ g)[A] = f [g[A]].

We also get the following corollary.

Corollary 1.2. If F,G are species,

ZF◦G = ZF ∗ ZG.
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Proof. It is enough to show that for every A,

ZF◦G[A] = ZF [ZG[A]].

A decorated F ◦ G-structure will be an F -structure on blocks partitioning a set and a
decorated G-structure on each block.

Remark 1.1. Recall that the Schur functions correspond to the irreducible characters of
Sn via the Frobenius characteristic map. Viewing the cycle index in terms of the Frobenius
map, the multiplication rule gives us a way to view induced representations of Sk × S` ⊆
Sk+` up to Sk+`.

Similarly, recall that the Schur functions correspond to the irreducible characters of
GLn(C). An action GLn(C) � Cm, gives us a homomorphism GLn(C) → GLm(C), and
so viewing the cycle index in terms of the Frobenius map defines a composition of such
homomorphisms.

1.2 Examples and computer-aided computation

Example 1.1. let T be the species of rooted trees. We had the species isomorphism

T = X1(E ◦ T ).

Then we have that
Zt = ZX(ZE ∗ ZT ).

We know that

ZE = Ω = 1 + h1 + h2 + · · · = exp
∞∑
k=1

pk
k
,

ZX1 = p1,

so we get the recurrence

ZT = p1(Ω ∗ ZT ) = p1 exp

∞∑
k=1

1

k
(pk ∗ ZT ).

This gives us that

UT (x) = ZT [x] = xΩ[ZT [x]] = x exp

∞∑
k=1

1

k
UT (xk),

which was something Polya proved using a more ad-hoc method; this was a fact that
predated this theory.
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Let’s successively approximate ZT .

0 = 0 + O(x)

x exp(0) = x + O(x2)

x exp(x + · · · ) = x(1 + x + · · · ) = x + x2 + · · ·

x exp(x + x2 + · · ·+ 1

2
(x2 + · · · ) + · · · ) = x exp(x +

3

2
x2 + · · · )

= x exp(x) exp(
3

2
x2 · · · )

= x(1 + x +
x2

2
+ · · · )(1 +

3

2
x2 + · · · )

= x(1 + x +
x2

2
+

3

2
x2 + · · · )

= x + x2 + 2x3 + · · ·

Example 1.2. Let G be the species of graphs, and consider a weighted cycle index, where
we weight by q|E(G)|:

ZG(p1, p2, . . . ; q) =
∑
n

1

n!

∑
σ∈Sn

|G(n)σ| pγ(σ)

We can compute this with a computer to get that the generating function for unlabeled
graphs is

1 + x + (1 + q)x2 + (1 + q + q2 + q3)x3

+ (1 + q + 2q2 + 3q2 + 2q4 + q5 + q6)x4

+ (1 + q + 2q2 + 4q3 + 6q5 + 6q6 + 4q7 + 2q8q9q10)x5 + · · ·

Every graph is a union of connected graphs, so we have that G ∼= E ◦Gc. We can the
compute the generating function for connected unlabelled graphs with a computer, as well.
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